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Chiral Suppression of Scalar-Glueball Decay
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Since glueballs are SU�3�Flavor singlets, they should couple equally to u, d, and s quarks, so that equal
coupling strengths to ���� and K�K� are expected. However, we show that chiral symmetry implies the
scalar-glueball amplitude for G0 ! �qq is proportional to the quark mass, so that mixing with �ss mesons is
enhanced and decays to K�K� are favored over ����. Together with evidence from lattice calculations
and experiment, this supports the hypothesis that f0�1710� is the ground state scalar glueball.
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1. Introduction.—The existence of gluonic states is a
quintessential prediction of quantum chromodynamics
(QCD). The key difference between quantum electrody-
namics (QED) and QCD is that gluons carry color charge
while photons are electrically neutral. Gluon pairs can then
form color singlet bound states, ‘‘glueballs,’’ like mesons
and baryons, which are color singlet bound states of va-
lence quarks [1]. Because of formidable experimental and
theoretical difficulties, it is not surprising that this simple,
dramatic prediction has resisted experimental verification
for more than two decades. Quenched lattice simulations
predict that the mass of the lightest glueball, G0, a scalar, is
near ’ 1:65 GeV [2], but the prediction is complicated by
mixing with �qq mesons that require more powerful com-
putations. Experimentally the outstanding difficulty is that
glueballs are not easily distinguished from ordinary �qq
mesons, themselves imperfectly understood. This diffi-
culty is also exacerbated if mixing is appreciable.

The most robust identification criterion, necessary but
not sufficient, is that glueballs are extra states, beyond
those of the �qq meson spectrum. This is difficult to apply
in practice, though ultimately essential. In addition, glue-
balls are expected to be copiously produced in gluon-rich
channels such as radiative J= decay, and to have small
two photon decay widths. These two expectations are
encapsulated in the quantitative measure ‘‘stickiness,’’ [3]
which characterizes the relative strength of gluonic versus
photonic couplings.

Another popular criterion is based on the fact that glue-
balls are SU�3�Flavor singlets which should then couple
equally to different flavors of quarks. However we show
here that the amplitude for the decay of the ground state
scalar glueball to quark-antiquark is proportional to the
quark mass, M�G0 ! �qq� / mq, so that decays to �ss pairs
are greatly enhanced over �uu� �dd, and mixing with �ss
mesons is enhanced relative to �uu� �dd. We exhibit the
result at leading order and show that it holds to all orders in
standard QCD perturbation theory.

The result has a simple nonperturbative physical expla-
nation, similar, though different in detail, to the well-
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known enhancement of �! �� relative to �! e�. For
mq � 0 chiral symmetry requires the final q and �q to have
equal chirality, hence unequal helicity, so that in theG0 rest
frame with the z axis in the quark direction of motion, the
total z component of spin is nonvanishing, jSZj � 1.
Because the ground state G0 gg wave function is isotropic
(L � S � 0), the �qq final state is pure s wave [4], L � 0.
The total angular momentum is zero, and since there is no
way to cancel the nonvanishing spin contribution, the
amplitude vanishes. With one power of mq � 0, the q
and �q have unequal chirality and the amplitude is allowed.

The enhancement is substantial, since ms is an order of
magnitude larger than mu and md [5]. But for scalar glue-
balls of mass ’ 1:5–2 GeV, ��G0 ! �ss� is suppressed of
order �ms=mG0

�2, so that it may be smaller than the nomi-
nally higher order G0 ! �qqg process, which is SU�3�Flavor

symmetric. We find that the soft and collinear quark-
gluon singularities of G0 ! �qqg vanish for mq � 0, as
they must if G0 ! �qq is to vanish at one loop order for
mq � 0. Unsuppressed, flavor-symmetric G0 ! �qqg de-
cays are dominated by configurations in which the gluon
is well separated from the quarks, which hadronize pre-
dominantly to multibody final states. G0 may also decay
flavor symmetrically to multigluon final states (n � 3), via
the three and four gluon components of G2 in Eq. (1), by
higher dimension operators that arise nonperturbatively, or
by higher orders in perturbation theory. The IR singular-
ities ofG0 ! ggg are canceled by virtual corrections to the
G0 wave function, while configurations with three (or
more) well separated gluons hadronize to multihadron final
states. The enhancement of �ss relative to �uu� �dd is then
most strongly reflected in two body decays: we expect
K�K� to be enhanced relative to ����, while multibody
decays are more nearly flavor symmetric.

Glueball decay to light quarks and/or gluons cannot
be computed reliably in any fixed order of perturba-
tion theory. However, the predicted ratio, ��G0 ! �ss�=
��G0 ! �uu� �dd� � 1, is credible since it follows from
an analysis to all orders in perturbation theory and, in
addition, from a physical argument. The implication that
1-1 © 2005 The American Physical Society
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��G0 ! K�K�� � ��G0 ! ����� is less secure and is
best studied on the lattice. Remarkably, it is supported by
an early quenched study of G0 decay to pseudoscalar
meson pairs for two ‘‘relatively heavy’’ SU�3�Flavor sym-
metric values of mq, corresponding to mPS ’ 400 and ’
630 MeV [6]. Linear dependence on mq implies quadratic
dependence on mPS [7], which is consistent at 1� with the
lattice computations [6]. Chiral suppression could then be
the physical basis for the unexpected and unexplained
lattice result. With subsequent computational and theoreti-
cal advances in lattice QCD, it should be possible today to
verify the earlier study and to extend it to smaller values of
mPS, nearer to the chiral limit and to the physical pion
mass. If the explanation is indeed chiral suppression, then
the couplings of higher spin glueballs should be approxi-
mately flavor symmetric and independent of mPS, a pre-
diction which can also be tested on the lattice.

Enhanced strange quark decay changes the expected
experimental signature and supports the hypothesis that
f0�1710� is predominantly the ground state scalar glueball.
This identification was advocated by Sexton, Vaccarino,
and Weingarten [6], and is even more compelling today in
view of recent results from J= decay obtained by BES
[8,9]—see Ref. [10] for an experimental overview.

In Section 2 we compute M�G0 ! �qq� at leading order
for massive quarks, with the expected linear dependence on
mq. In Section 3 we show that M�G0 ! �qq� / mq to any
order in �S. In Section 4 we describe the infrared singu-
larities of M�G0 ! �qqg�. We conclude with a brief dis-
cussion, including experimental implications.

2. G0 ! �qq at leading order.—Consider the decay of
a scalar glueball G0 with mass MG to a �qq pair [11]
with quark mass mq. The effective glueball-gluon-gluon
coupling is parameterized by

L eff � f0G0Ga��G
��
a (1)

where G0 is an interpolating field for the glueball, Ga�� is
the gluon field strength tensor with color index a, and f0 is
an effective coupling constant that depends on theG0 wave
function. The gg! �qq scattering amplitude is

M �gg! �qq� � �1��2�M
���gg! �qq� (2)

where �i� � ���pi; �i� with i � 1; 2 are the polarization
vectors for massless constituent gluons with four-
momentum pi and polarization �i. Summing over the
polarizations �i and averaging over the gluon direction in
the G0 rest frame to project out the s wave, we find

M �G0 ! �qq� �
f0

4�

Z
d�X��M���gg! �qq�; (3)

where X�� � 2p�2 p
�
1 �M

2
Gg

�� projects out the j���� �
����i helicity state that couples to Ga��G

��
a in Eq. (1).
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From the lowest order Feynman diagrams we obtain

X��M�� � �
32�

���
2
p
�S

3

�
mq

1� �2cos2	
�u�p3; h3�v�p4; h4�
ij (4)

where u3; v4 are the q; �q spinors for quark and antiquark
with center of mass momenta p3; p4, helicities h3; h4, color
indices i; j, and center of mass velocity �. Equation (4)
includes a color factor from the color singlet gg wave
function, Cij � �

���
2
p
=3�
ij

After angular integration the decay amplitude is

M �G0 ! �qq� � �f0�S
16�

���
2
p

3

mq

�
log

1� �
1� �

�u3v4
ij:

(5)

Squaring Eq. (5), summing helicities and color indices, and
integrating over the phase space, the width is

��G0 ! �qq� �
16�

3
�2
Sf

2
0m

2
qMG�log2 1� �

1� �
: (6)

Notice that an explicit factor mq appears in the gg! �qq
amplitude, Eq. (4), which is not averaged over the initial
gluon direction and which clearly has contributions from
higher partial waves, J > 0. It may then appear that chiral
suppression applies not just to spin-0 glueballs but also to
glueballs of higher spin. However, when Eq. (4) is squared
and the phase space integration is performed, a factor 1=m2

q

results from the t and u channel poles, which cancels the
explicit factor m2

q in the numerator, so that the total cross
section ��gg! �qq� does not vanish in the chiral limit,
because of the J > 0 partial waves.

3. G0 ! �qq to all orders.—We now show that
M�G0 ! �qq� vanishes to all orders in perturbation theory
for mq � 0. Consider the Lorentz invariant amplitude

M X�p1; p2; p3; p4� � X��M��: (7)

The perturbative expansion for MX is a sum of terms
arising from Feynman diagrams with arbitrary numbers
of loops. After evaluation of the loop integrals, regularized
as necessary, MX is a sum of terms,

M X �
X
i

�u�p3; �3��iu�p4; �4�; (8)

where u3; u4 are massless fermion, antifermion spinors
[12] of chirality �3; �4. The �i are 4� 4 matrices, each a
product of ni momentum-contracted Dirac matrices,

�i � 6ki1 6ki2 . . . 6kini (9)

where each kia is one of the external four-momenta,
p1; p2; p3; p4.

Chiral invariance for mq � 0 implies that the number of
factors, ni, in Eq. (9) is always odd. Since all external
momenta vanish and the spinors obey 6p3u3 � 6p4u4 � 0,
1-2
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by suitably anticommuting the 6kia, each term in Eq. (8) can
be reduced to a sum of terms linear in 6p1 and 6p2, which we
choose to be symmetric and antisymmetric,

�u�p3; �3��iu�p4; �4� � �u�p3; �3�	Si�s; t; u��6p1 � 6p2�

� Ai�s; t; u��6p1 � 6p2�
u�p4; �4�:

(10)

Ai and Si are Lorentz invariant functions of the
Mandelstam variables s; t; u. Since p1 � p2 � p3 � p4,
the symmetric term vanishes and Eq. (8) reduces to

M X � A�s; t; u� �u�p3; �3��6p1 � 6p2�u�p4; �4�: (11)

where A�s; t; u� �
P
iAi�s; t; u�.

Next consider the integration over the gluon direction,
Eq. (3). In the G0 rest frame with the z axis chosen along
the quark direction of motion, ẑ � p̂3, we integrate over
d� � d2p̂1 � d�1d cos	1. The Mandelstam variables are
then s � M2

G and u; t � � 1
2M

2
G�1� cos	1�. Since the

color and helicity components of the G0 wave function
are symmetric under the interchange of the two gluons,
Bose symmetry requires A�s; t; u� to be odd under p1 $
p2. In our chosen coordinate system A is a function only of
cos	1, and must therefore be odd, A�� cos	1� �
�A�cos	1�. But evaluating �u3�6p1 � 6p2�u4 explicitly [12]
we find

�u 3�6p1 � 6p2�u4 � M2
Ge
�i�1 sin	1 (12)

which is even in cos	1, while the azimuthal factor, e�i�1 ,
provides the required oddness under p1 $ p2: e�i�1 !

e�i��1��� � �e�i�1 . Consequently
R
d cos	1A vanishes,

and M�G0 ! �qq� � 0 to all orders in the chiral limit.
Because of our choice of axis, ẑ � p̂3, the integral over
�1 also vanishes. For other choices of ẑ the azimuthal and
polar integrals do not vanish separately, but the full angular
integral,

R
d2p̂1, vanishes in any case.

For nonvanishing quark mass, mq � 0, chirality-flip
amplitudes contribute. With one factor of mq from the
fermion line connecting the external quark and antiquark,
the �i matrices in Eq. (8) include products of even numbers
of Dirac matrices, i.e., ni in Eq. (9) may be even. In order
mq there are then contributions to M�G0 ! �qq�, like the
term shown explicitly in Eq. (5).

The vanishing azimuthal integration for ẑ � p̂3 reflects
the physical argument given in the introduction. The factor
e�i�1 corresponds to SZ � 1 from the aligned spins of the
q and �q, while the absence of a compensating factor in A
is due to the projection of the orbital s wave by the

R
d2p̂1

integration and the absence of spin polarization in the
initial state.

4. Infrared singularities of G0 ! �qqg.—Although it is
of order �3

S, ��G0 ! �qqg� is not chirally suppressed and
may therefore be larger than ��G0 ! �ss�, which is of order
�2
S �m

2
s=m2

G. Setting mq � 0 we evaluated the 13
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Feynman diagrams using the helicity spinor method [12]
with numerical evaluation of the 9 dimensional integral:

��G0 ! �qqg� �
X

h3;h4;�5

Z
PS
jM�G0 ! �q3q4g5�j

2

�
f2

0

16�2

X
h3;h4;�5

Z
PS

Z
d�1

Z
d�01�

�
5�X��

�M����g1g2 ! �q4q3g5��5�X
0
�

�M���g01g
0
2 ! �q4q3g5�

�: (13)

We focus here on the infrared singularities, which provide
a consistency check at one loop order that M�G0 ! �qq�
vanishes in the chiral limit.

In general there could be soft IR divergences for
Eq; E �q; Eg ! 0 and collinear divergences for
	qg; 	 �qg; 	 �qq ! 0. In fact, only the �qq collinear divergence
occurs: neither dN=dEg nor dN=dEq diverge at low en-
ergy, and only dN=	 �qq diverges at 	 �qq ! 0. Instead
dN=dEg diverges at the maximum energy, Eg � mG0

=2,
and dN=d	qg diverges for 	qg ! �. Both of these diver-
gences are kinematical reflections of the collinear singu-
larity at 	 �qq ! 0, for which the �qq pair with m �qq � 0
recoils with half the available energy against the gluon in
the opposite hemisphere (paper in preparation [13]).

This is precisely the pattern of divergences required if
G0 ! �qq is chirally suppressed to all orders and, in par-
ticular, at one loop. For if there were soft divergences in
any of Eq; E �q; Eg or collinear divergences in 	qg and 	 �qg,
then the resulting singularities atmqg;m �qg ! 0 would have
to be canceled by virtual corrections to G0 ! �qq, such as
gluon self-energy contributions to the quark propagator.
The absence of these singularities is a consistency check
(i.e., a necessary condition) that G0 ! �qq is chirally sup-
pressed at one loop order. The collinear divergence for
	 �qq ! 0 is canceled by quark loop contributions to the
gg! gg amplitude, which in the present context are one
loop corrections to the G0 wave function.

5. Discussion.—We have shown to all orders in pertur-
bation theory and with a simple, nonperturbative physical
argument that the ground state J � 0 glueball has a chirally
suppressed coupling to light quarks, M�G0 ! �qq� / mq,
with corrections of higher order in mq=mG. From Eq. (6)
with mu;md;ms varied within 1� limits [5], ��G0 ! �ss�
dominates ��G0 ! �uu� �dd� by a factor between 20 and
100. Flavor symmetry is reinstated forG0 ! �qqgwhen the
gluon is well separated from the q and �q. For sufficiently
heavy mG one can test this picture by measuring strange-
ness yield as a function of thrust or sphericity, with en-
hanced strangeness in high thrust or low sphericity events,
but it is unclear if this is feasible for mG ’ 1:7 GeV. It is
more feasible for the ground state pseudoscalar glueball,
which is expected to be heavier than the scalar and which
we also expect to be subject to chiral suppression.
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For light scalar glueballs, the best hope to see strange-
ness enhancement is the two body decays, G0 !
K�K�=����. Since G0 ! �qqg and G0 ! ggg are not
chirally suppressed, naive power counting suggests
��G0 ! �qqg� ggg� � ��G0 ! �ss�, so that n � 3 parton
decay amplitudes are probably the dominant mechanism
for multihadron production. Then �KK will dominate two
body decays while multiparticle final states are approxi-
mately SU�3�Flavor symmetric up to phase space correc-
tions favoring nonstrange final states.

Chiral suppression has a major impact on the experi-
mental search for the ground state scalar glueball.
Candidates cannot be ruled out because they decay pref-
erentially to strange final states, especially �KK, and mix-
ing with �ss mesons may be enhanced. This picture fits
nicely with the f0�1710� meson: it is copiously pro-
duced in radiative  decay in the  ! � �KK channel [8]
and in the gluon-rich central rapidity region in pp scatter-
ing [14], has a small �� coupling [15], mass consistent
with the prediction of quenched lattice QCD [2], and a
strong preference to decay to �KK, with B����=B� �KK�<
0:11 at 95% CL [9]. As a rough estimate of the sticki-
ness [3], we combine the �� 95% CL upper limit with
central values for  radiative decay [8], with the re-
sult S�f0�1710��:S�f02�1525��:S�f2�1270�� ’ �>36�:12:1.
A more complete discussion of the experimental situation
will be given elsewhere [13]—see also Ref. [10].

The interpretation of f0�1710� as the chirally suppressed
scalar glueball can be tested both theoretically and experi-
mentally. Lattice QCD can test the prediction that G0 !
�KK is enhanced for the ground state J � 0 glueball but not

for J > 0. With an order of magnitude more J= decays
than BES II, experiments at BES III and CESR-C will
study rarer two body decays and multiparticle decays. If,
as seems likely, the rate for multiparticle decays is big, the
lower bound on B� ! �f0�1710�� will increase beyond
its already appreciable value from KK alone. A large
inclusive rate B� ! �f0�, a large ratio B�f0 !
�KK�=B�f0 ! ���, and approximately flavor-symmetric

couplings to multiparticle final states would support the
identification of f0�1710� as the chirally suppressed,
ground state scalar glueball.
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helpful discussions. This work was supported in part by the
Director, Office of Science, Office of High Energy and
Nuclear Physics, Division of High Energy Physics, of the
U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

Note added.—The trace anomaly [16] implies chiral
suppression of the G0 coupling to �� and �KK at zero
four-momentum [17]; however, the extrapolation to the
G0 mass-shell is out of control and could be large.
Similarly, in the conjectured anti-de Sitter approach to
QCD the scalar glueball is a dilaton [18], with chirally
17200
suppressed two body couplings at zero momentum. I thank
A. Soni, H. Murayama, and M. Schwartz for bringing these
works to my attention.
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